Here is the code in C++ for simplex method problem .This code is well tested for number of inputs .
You need VB 6 or TURBO C complier to run this code.
PROGRAM:
#include <stdio.h>
#include <math.h>
#define CMAX 10
#define VMAX 10
int NC, NV, NOPTIMAL,P1,P2,XERR;
double TS[CMAX][VMAX];
void Data() {
double R1,R2;
char R;
int I,J;
printf("\n SIMPLEX METHOD\n\n");
printf(" MAXIMIZE (Y/N) ? "); scanf("%c", &R);
printf("\n NUMBER OF VARIABLES OF THE FUNCTION ? ");
scanf("%d", &NV);
printf("\n NUMBER OF CONSTRAINTS ? "); scanf("%d", &NC);
if (R == 'Y' || R=='y')
R1 = 1.0;
else
R1 = -1.0;
printf("\n INPUT COEFFICIENTS OF THE FUNCTION:\n");
for (J = 1; J<=NV; J++) {
printf(" #%d ? ", J); scanf("%lf", &R2);
TS[1][J+1] = R2 * R1;
}
printf(" Right hand side ? "); scanf("%lf", &R2);
TS[1][1] = R2 * R1;
for (I = 1; I<=NC; I++) {
printf("\n CONSTRAINT #%d:\n", I);
for (J = 1; J<=NV; J++) {
printf(" #%d ? ", J); scanf("%lf", &R2);
TS[I + 1][J + 1] = -R2;
}
printf(" Right hand side ? "); scanf("%lf", &TS[I+1][1]);
}
printf("\n\n RESULTS:\n\n");
for(J=1; J<=NV; J++) TS[0][J+1] = J;
for(I=NV+1; I<=NV+NC; I++) TS[I-NV+1][0] = I;
}
void Pivot();
void Formula();
void Optimize();
void Simplex() {
e10: Pivot();
Formula();
Optimize();
if (NOPTIMAL == 1) goto e10;
}
void Pivot() {
double RAP,V,XMAX;
int I,J;
XMAX = 0.0;
for(J=2; J<=NV+1; J++) {
if (TS[1][J] > 0.0 && TS[1][J] > XMAX) {
XMAX = TS[1][J];
P2 = J;
}
}
RAP = 999999.0;
for (I=2; I<=NC+1; I++) {
if (TS[I][P2] >= 0.0) goto e10;
V = fabs(TS[I][1] / TS[I][P2]);
if (V < RAP) {
RAP = V;
P1 = I;
}
e10:;}
V = TS[0][P2]; TS[0][P2] = TS[P1][0]; TS[P1][0] = V;
}
void Formula() {;
int I,J;
for (I=1; I<=NC+1; I++) {
if (I == P1) goto e70;
for (J=1; J<=NV+1; J++) {
if (J == P2) goto e60;
TS[I][J] -= TS[P1][J] * TS[I][P2] / TS[P1][P2];
e60:;}
e70:;}
TS[P1][P2] = 1.0 / TS[P1][P2];
for (J=1; J<=NV+1; J++) {
if (J == P2) goto e100;
TS[P1][J] *= fabs(TS[P1][P2]);
e100:;}
for (I=1; I<=NC+1; I++) {
if (I == P1) goto e110;
TS[I][P2] *= TS[P1][P2];
e110:;}
}
void Optimize() {
int I,J;
for (I=2; I<=NC+1; I++)
if (TS[I][1] < 0.0) XERR = 1;
NOPTIMAL = 0;
if (XERR == 1) return;
for (J=2; J<=NV+1; J++)
if (TS[1][J] > 0.0) NOPTIMAL = 1;
}
void Results() {
int I,J;
if (XERR == 0) goto e30;
printf(" NO SOLUTION.\n"); goto e100;
e30:for (I=1; I<=NV; I++)
for (J=2; J<=NC+1; J++) {
if (TS[J][0] != 1.0*I) goto e70;
printf(" VARIABLE #%d: %f\n", I, TS[J][1]);
e70: ;}
printf("\n ECONOMIC FUNCTION: %f\n", TS[1][1]);
e100:printf("\n");
}
void main() {
Data();
Simplex();
Results();
}
OUTPUT:
MAXIMIZE (Y/N) ? y
NUMBER OF VARIABLES OF THE FUNCTION ? 2
NUMBER OF CONSTRAINTS ? 3
INPUT COEFFICIENTS OF THE FUNCTION:
#1 ? 4
#2 ? 10
Right hand side ?
0
CONSTRAINT #1:
#1 ? 2
#2 ? 1
Right hand side ? 50
CONSTRAINT #2:
#1 ? 2
#2 ? 5
Right hand side ? 100
CONSTRAINT #3:
#1 ? 2
#2 ? 3
Right hand side ? 90
RESULTS:
VARIABLE #2: 20.000000
ECONOMIC FUNCTION: 200.000000
3 comments:
After going over a number of the blog posts on your
web page, I seriously appreciate your way of blogging.
I added it to my bookmark website list and will be checking back soon.
Please visit my web site too and tell me your opinion.
Here is my page oxford yoga
thanks... :)
Thanks a lot..
Post a Comment
If You Are Asking Some Question On This Comment Then Click On Subscribe by email Link